
TITLE: Writing Device Drivers - Where to Start?
IBM Developer Connection News Volume 2
by Steve Mastrianni

I get a lot of questions from developers just starting to write
device drivers. One of the most common questions is "How do I
get started writing OS/2 device drivers?" Well, that depends on
your background.

Because device drivers interact with the OS/2 kernel, you should
have a good understanding of the basic functions provided by
OS/2, such as multithreading, priorities, memory allocation, and
addressing.

A majority of the questions I get involve a misunderstanding of
how various types of addresses work. Driver writers must be
able to work with virtual, linear, physical, and real addresses.
Since the device driver interacts with the processor at the
machine level, a good understanding of the processor
architecture is also invaluable. Failures in a device driver
usually hang the system, and tracking them down can be tedious
without knowing where to look.

If you're writing your device drivers in C, you'll need a
16-bit C Compiler such as Microsoft C Version 5.1 or Version
6.0. You'll also need an assembler, such as the Microsoft
Version 6.0 Macro Assembler. Previous versions (such as
Version 5.1) will also work.

If you're writing Virtual Device Drivers (VDDs), you'll need
a 32-bit C compiler, such as IBM C Set/2 or C Set++
(recommended) or the special 32-bit compiler, CL386, included
in the Device Driver Source Kit (DDK). The DDK also includes
the kernel debugger and ASDT32, which you will need to debug
your device drivers. The Periscope Debugger is available
commercially.

You also should get the OS/2 Technical Library, a 50-pound
collection of developer reference books, which includes the
OS/2 Physical Device Driver Reference, Virtual Device Driver
Reference, and Presentation Driver Reference. The library is
also available as part of the OS/2 Online Book Collection
CD-ROM.

You can get the book, Writing OS/2 2.1 Device Drivers in C,
2nd edition. It's the only tutorial on writing OS/2 2.x
device drivers. Call 1-800-842-3636 to order.

Support for device driver writers is free via IBM's DUDE
(Dynamic Upload and Download Environment). Periodically,
the DUDE team archives the questions into a file (removing
names), which you can download. See the Directory of this
Newsletter on how to access the DUDE.

You can download the file CDISK.ZIP from the Libraries
section, Device Drivers, of OS2DF1 on CompuServe. CDISK.ZIP
includes several sample device drivers, including a VDD sample,
all written in C.

I've always written my drivers in C; IBM has historically
written them in assembler. This is evidenced by the code in
the PDD reference, which contains MASM examples of DevHlp
calls. With the advent of Workplace OS, IBM has begun to
document C-language interfaces to the DevHlps. Future

Page 1 of 3Writing Device Drivers - Getting the Most out of OS/2

9/8/2018file:///D:/MastrianniWeb/pubs/devconb.htm

releases of the DDK and driver references will include these.

Another question I get asked frequently is "How can I
initialize a memory mapped adapter during initialization
(Init time)?" Very often, adapters must have their memory
loaded with a program or initialized. Many device driver
writers experience their first Trap 13 (General Protection
Fault) when attempting to perform this operation during
Init.

The most common cause is that driver writers sometimes
forget that Init is run as a ring 3 thread of the system.
Mapping a physical address to a virtual address with
PhysToVirt yields a GDT-based pointer, which is not usable
from a ring 3 thread. Ring 3 threads do not have GDT
access; only LDT access.

The solution to this problem is to map the physical
address of the adapter to a virtual address that's mapped
into the application's LDT. This is done with the PhysToUVirt
DevHlp call, rather than the PhysToVirt call.

If you have a lot of data to download to the adapter, keep it
in a disk file, and use the standard DosOpen, DosRead, and
DosClose APIs. This is possible because Init is running as a
ring 3 thread, which is the same ring level at which most
applications run.

"How can device drivers can transfer data at interrupt time?"

This is a little tricky; but easy once it's been explained.
Remember that Init runs as a ring 3 thread with access to the
application program's LDT. The rest of the time, your device
driver operates in the lowest ring, ring 0. While at ring 0,
the device driver has full access to the GDT and for the most
part, the entire system.

The problem is that when an interrupt occurs, your program
might not be the program that is currently running. For
example, your program might be blocked waiting for I/O or
waiting on a semaphore. Because of this, the context, or
current environment at that instant, might not be known.

Trying to map an application's buffer address at interrupt
time will not work. To maintain addressability in any
context, the application's buffer address must be mapped to
a GDT selector. The selector, however, must be allocated
during Init, and then mapped to the GDT selector for later
use during interrupt time. Remember that even though you
map the selector during Init, you can't use it during Init.

Steve Mastrianni is an industry consultant specializing in
device drivers and real-time applications for OS/2. The
author of "Writing OS/2 Device Drivers in C", Steve is
regarded as one of the industry's leading experts in OS/2
and OS/2 device drivers.

TIPS

o To access a GDT selector during Init, start a timer handler that
 will be called within 32ms at ring 0; then perform the access.

Page 2 of 3Writing Device Drivers - Getting the Most out of OS/2

9/8/2018file:///D:/MastrianniWeb/pubs/devconb.htm

o If you need to post a 32-bit shared even semaphore at interrupt
 time, which normally can't be done, allocate and arm a context
 hook. This hook will be called at task time and therefore will
 be able to post the semaphore.

Page 3 of 3Writing Device Drivers - Getting the Most out of OS/2

9/8/2018file:///D:/MastrianniWeb/pubs/devconb.htm

